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Investigation has been made into various approaches for analyzing the vibration of plates
with stepped thicknesses. First, attention has been paid to updating a classical approach
for the analysis of such problems, correcting the boundary conditions cited in an earlier
paper and dealing with the difficulties that can arise when calculating high order modes.
Secondly, contribution has been made to improving the classical finite strip method (FSM)
by replacing the ‘‘static’’ shape function of the strip element model by a ‘‘dynamic’’
function. This leads to the development of a dynamic finite strip method which improves
solution accuracy without compromising model size and which therefore is more efficient
than the classical FSM. When compared with the finite element method (FEM), which is
also considered here, the advantages of smaller model size and higher accuracy of the
dynamic FSM are significant. In order to demonstrate the application of the above
approaches, the modes of simply supported plates with uniform and stepped thicknesses
have been analyzed. From this numerical study, it is noted that the updated classical
approach can be used to obtain a solution for any order mode to any specified accuracy
and is the most efficient approach considered in the present study. It is also noted that,
compared with the FEM of similar solution accuracy, the dynamic finite strip method
normally produces a much smaller model size, so that such calculations are significantly
more efficient than for the FEM. The aim of this work is to establish efficient methods for
the analysis of stepped plates that might be used in optimization studies where speed of
formulation and solution are at a premium. There are, of course, a number of other
methods that could be used to tackle such problems, but they lie outside the scope of this
work; see for example the papers of Liew and co-authors [1, 2].
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1. INTRODUCTION

The main purpose of this work is to obtain efficient methods for the structural dynamic
analysis of stepped thickness plates when accurate high order modes are required. As is
well known when carrying out modal analysis using a discrete numerical approach, such
as the finite element method (FEM) or finite strip method (FSM), the number of modes
that may be solved and the solution accuracy of these modes, depends to a great extent
upon the meshing or element size. This somewhat limits application of the FEM, especially
when both high order modes and optimization are involved. On the other hand,
application of analytical approaches is usually limited to very simple cases such as a
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vibrating plate with simply supported boundary conditions where exact solutions can
be obtained. In the current work, attention has been paid to improving the classical
FSM, since this method has some features in favour of the application case of interest
here.

The finite strip method (FSM) presented by Cheung [3] has been developed and applied
to various structural dynamic analyses successfully. The main advantage of the method
is its efficiency and accuracy, especially for structures with regular geometry. This is
because it combines the versatility of the finite element method (FEM) with the rapid
convergence of the Ritz approach, by selecting proper trial functions a priori. Compared
to the FEM, the model size used by the FSM is usually smaller, since unlike the FEM,
in which meshing normally needs to be implemented in all dimensions, the FSM uses
modal functions instead of polynomials and meshing in at least one dimension for a
multi-dimensional problem. To take plate bending vibration as an example, strip element
(beam) vibration modal functions are normally used as part of the plate displacement
function, without discretization in the longitudinal direction and polynomials (namely the
shape functions) are used to represent deformation of the strip elements. This feature is
of significant advantage, especially when high order modes are required, since the
dependency of the accuracy upon the model size is then reduced to a large extent. However,
the structural model still has to be discretized in at least one dimension. This provides
flexibility in the element model assembly and application, but the disadvantage of solution
dependency upon the meshing or model size remains.

In order to improve the classical FSM, attention has been paid to the improvement of
the shape functions. In theory, the shape function should be replaced by the displacement
function from the differential equation of a vibrating beam. However, this results in a
frequency dependent stiffness matrix which causes some difficulties. In order to maintain
the efficiency of the FSM, the frequency dependent displacement function of the strip in
its transverse direction is represented as a series in terms of increasing powers of frequency.
This approach has been applied to the development of the so called dynamic finite element
method [4, 5, 6]. In this manner, the frequency can be removed from the displacement
function which makes the eigen-problem easier to solve. In addition, the number of terms
in the series included in the strip model can be chosen by the user, which reduces the
dependency of the model accuracy upon the strip element size in the transverse direction,
although meshing is not totally removed. In addition, based as it is on a displacement
approach, the strip element model in the FSM must be C1-continuous to make the FSM
applicable to the vibration of a plate with abrupt change of thickness, which is the case
being dealt with here. It is noted that a new finite strip method has been developed by
Cheung and Kong [7] and applied to the vibration of plates with stepped thickness.
However, unlike the dynamic FSM, to refine the displacement function, the modal
functions of the classical method are simplified in Cheung’s new method by using static
modes while the shape functions remain cubic Hermitian functions.

In order to demonstrate the application and efficiency of the dynamic finite strip method,
simply supported thin plates with uniform thickness and abrupt thickness changes are
taken as examples and the classical and dynamic FSM are used. To assess the accuracy
of these methods, the classical approach developed by Chopra [8] for the vibration of a
plate with thickness change has also been applied to these cases. However, it is noted that
when applying this approach for high order modes, the matrix, on which the eigenvalue
calculations are based, can become ill-conditioned and then difficulty arises in obtaining
zero determinants. Therefore, attention has also been paid to overcoming this difficulty
in the current work. It is also noted that in the original paper by Chopra [8] an
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inappropriate set of boundary conditions was adopted and these have been revised
here.

The modal results from these various methods are compared and discussed in what
follows. For the two examples considered, it is known that the FE models have much larger
sizes than the FS models and are therefore less efficient. When the FS model is further
reduced as shown in Example 2, although the solution accuracy from the classical FSM
is affected, it can be improved by applying the dynamic FSM which is seen to be the more
efficient approach in this case.

2. CLASSICAL METHOD

A classical method for the vibration of a stepped thickness plate based on the work of
Chopra [8] has been developed and initially applied to a plate with one change in thickness.
In order to deal with the vibration problem of a multi-stepped thickness plate as shown
in Figure 1, especially for high order modes, further investigation into the practical use
and extension of the method has been carried out. Theoretically, by dividing the whole
plate into parts according to its thickness changes in the longitudinal direction, each part
of the plate is then of uniform thickness and can be represented by the following governing
differential equation under the assumption of sinusoidal movement for free vibration:

(94 − k4
i )Wi =0 xi E xE xi+1 i=1, 2, . . . , J+1. (1)

Here the subscript i represents the ith part of a plate of J+1 sections and k4
i = rv2ti/Di ;

Wi is the displacement function of the ith part for which the general solution is

Wi(j, h)= s
n

Sin(j) sin (nph), (2)

with the shape function

Sin(j)=Ain sin (li1j)+Bin cos (li1j)+Cin sinh (li2j)+Dincosh (li2j), (3)

where li1 = azk2
i − a2, li2 = azk2

i + a2 and Ain , Bin , Cin and Din are unknown coefficients.
(A list of notation is given in the Appendix.)

First, by introducing the boundary conditions, such as the simply supported edges in
the current case, the shape function for the first and last parts of the plate can be simplified
with fewer unknown coefficients as follows:

S1n(j)=A1n sin l11j+C1n sinh l12j, (4a)

Figure 1. A simply supported plate with two stiffeners.
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SJ+1,n(j)=AJ+1,n(sin lJ+1,1j−tan lJ+1,1 cos lJ+1,1j)

+CJ+1,n(sinh lJ+1,2j−tanh lJ+1,2 cosh lJ+1,2j). (4b)

Secondly, by substituting equations (2) and (4) into the following continuity conditions
which should be satisfied along each of the joint lines located at ji ,

Wi(j, h)=Wi+1(j, h)

W'i (j, h)=W'i+1(j, h)

Di612Wi(j, h)
1x2 + n

12Wi(j, h)
1y2 7=Di+1612Wi+1(j, h)

1x2 + n
12Wi+1(j, h)

1y2 7 h
G

G

G

G

G

G

J

jDi613Wi(j, h)
1x3 + (2− n)

13Wi(j, h)
1x1y2 7=Di+1613Wi+1(j, h)

1x3 + (2− n)
13Wi+1(j, h)

1x1y2 7
at j= ji , (5)

four equations corresponding to each joint line can be established. (It should be noted that
in the original work by Chopra [8] the last two of these conditions are incorrectly specified
as W0i (j, h)=W0i+1(j, h) and W1i (j, h)=W1i+1(j, h) which, of course, hold only when
there is no change in plate properties across the joint.)

For a plate with two different thickness parts joined along the line at j1, the four
equations can be written in matrix form as

sin l11j1 sinh l12j1

G
G

G

K

k

l11 cos l11j1 l12 cosh l12j1 G
G

G

L

l
−D1{l2

11 + na2} sin l11j1 D1{l2
12 − na2} sinh l12j1

−D1l11{l2
11 + (2− n)a2} cos l11j1 D1l12{l2

12 − (2− n)a2} cosh l12j1

−(sin l21j1 − tan l21 cos l21j1) −(sinh l22j1 − tanh l22 cosh l22j1)

−l21(cos l21j1 + tan l21 sin l21j1) −l22(cosh l22j1 − tanh l22 sinh l22j1)

G
G

G

G

G

G

G

K

k

D2{l2
21 + na2} (sin l21j1 − tan l21 cos l21j1) G

G

G

G

G

G

G

L

l

−D2{l2
22 − na2} (sinh l22j1 − tanh l22 cosh l22j1)

D2l21{l2
21+(2− n)a2}(cos l21j1 + tan l21 sin l21j1)

−D2l22{l2
22 − (2− n)a2} (cosh l22j1 − tanh l22 sinh l22j1)

A1n

C1n

×g
G

G

F

f
A2n

h
G

G

J

j

= {0}. (6)

C2n

The eigenvalues of the vibrating plate can be obtained from the v included in the l of
the above equations which make the determinant of the above 4×4 coefficient matrix
zero. Relative values of the coefficients A1n , C1n , A2n and C2n corresponding to any
eigenvalue can then be calculated by solving a reduced inhomogeneous equation and
substituting back into equations (4) and (2) to obtain the corresponding mode shapes.
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For the general case of a plate with multi-thickness parts joined at J joint lines, the
continuity conditions in equation (5) have to be applied to equation (2) at each joint line.
This results in 4× J equations: at joint 1,

A1n sinl11j1 +C1n sinhl12j1 −A2n sinl21j1 −B2n cosl21j1 −C2n sinhl22j1 −D2n coshl22j1 =0,

A1nl11 cos l11j1 +C1nl12 cosh l12j1 −A2nl21 cos l21j1 +B2nl21 sin l21j1

−C2nl22 cosh l22j1 −D2nl22 sinh l22j1 =0,

−A1nD1{l2
11 + na2} sin l11j1 +C1nD1{l2

12 − na2} sinh l12j1

+A2nD2{l2
21 + na2} sin l21j1 +B2nD2{l2

21 + na2} cos l21j1

−C2nD2{l2
22 − na2} sinh l22j1 −D2nD2{l2

22 − na2} cosh l22j1 =0,

−A1nD1l11{l2
11 + (2− n)a2} cos l11j1 +C1nD1l12{l2

12 − (2− n)a2} cosh l12j1

+A2nD2l21{l2
21 + (2− n)a2} cos l21j1 −B2nD2l21{l2

21 + (2− n)a2} sin l21j1

−C2nD2l22{l2
22 − (2− n)a2} cosh l22j1

−D2nD2l22{l2
22 − (2− n)a2} sinh l22j1 =0; (7a)

at joints j=2, . . . , (J−1),

Ajn sin lj1jj +Bjn cos lj1jj +Cjn sinh lj2jj +Djn cosh lj2jj

−Aj+1,n sin lj+1,1jj −Bj+1,n cos lj+1,1jj −Cj+1,n sinh lj+1,2jj

−Dj+1,n cosh lj+1,2jj =0,

Ajn cos lj1jj −Bjnlj1 sin lj1jj +Cjnlj2 cosh lj2jj +Djnlj2 sinh lj2jj

−Aj+1,nlj+1,1 cos lj+1,1jj +Bj+1,nlj+1,1 sin lj+1,1jj

−Cj+1,nlj+1,2 cosh lj+1,2jj −Dj+1,nlj+1,2 sinh lj+1,2jj =0,

−AjnDj{l2
j1 + na2} sin lj1jj −BjnDj{l2

j1 + na2} cos lj1jj +CjnDj{l2
j2 − na2} sinh lj2jj

+DjnDj{l2
j2 − na2} cosh lj2jj

+Aj+1,nDj+1{l2
j+1,1 + na2} sin lj+1,1jj +Bj+1,nDj+1{l2

j+1,1 + na2} cos lj+1,1jj

−Cj+1,nDj+1{l2
j+1,2 − na2} sinh lj+1,2jj

−Dj+1,nDj+1{l2
j+1,2 − na2} cosh lj+1,2jj =0,

−AjnDjlj1{l2
j1 + (2− n)a2} cos lj1jj +Bjn{l2

j1 + (2− n)a2} sin lj1jj

+CjnDjlj2{l2
j2 − (2− n)a2} cosh lj2jj +DjnDjlj2{l2

j2 − (2− n)a2} sinh lj2jj

+Aj+1,nDj+1lj+1,1{l2
j+1,1 + (2− n)a2} cos lj+1,1jj

−Bj+1,nDj+1lj+1,1{l2
j+1,1 + (2− n)a2} sin lj+1,1jj

−Cj+1,nDj+1lj+1,2{l2
j+1,2 − (2− n)a2} cosh lj+1,2jj

−Dj+1,nDj+1lj+1,2{l2
j+1,2 − (2− n)a2} sinh lj+1,2jj =0; (7b)

and at the last joint J,

AJn sin lJ1jJ +BJn cos lJ1jJ +CJn sinh lJ2jJ +DJn cosh lJ2jJ

−Aj+1,n(sin lJ+1,1jJ −tan lJ+1,1 cos lJ+1,1jJ)
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−CJ+1,n(sinh lJ+1,2jJ −tanh lJ+1,2 cosh lJ+1,2jJ)=0,

AJnlJ1 cos lJ1jJ −BJnlJ1 sin lJ1jJ +CJnlJ2 cosh lJ2jJ +DJnlJ2 sinh lJ2jJ

−AJ+1,nlJ+1,1(cos lJ+1,1jj +tan lJ+1,1 sin lJ+1,1jJ)

−CJ+1,nlJ+1,2(cosh lJ+1,2jJ −tanh lJ+1,2 sinh lJ+1,2jJ)=0,

−AJnDJ{l2
J1 + na2} sin lJ1jJ −BJnDJ{l2

J1 + na2} cos lJ1jj

+CJnDJ{l2
J2 − na2} sinh lJ2jJ +DJnDJ{l2

J2 − na2} cosh lJ2jJ

−AJ+1,nDJ+1{l2
J+1,1 + na2}(sin lJ+1,1jJ −tan lJ+1,1 cos lJ+1,1jJ)

−CJ+1,nDJ+1{l2
J+1,2 − na2}(sinh lJ+1,2jJ

−tanh lJ+1,2 cosh lJ+1,2jJ)=0,

−AJnDJlJ1{l2
J1 + (2− n)a2} cos lJ1jJ +BJnDJlJ1{l2

J1 + (2− n)a2} sin lJ1jJ

+CJnDJlJ2{l2
J2 − (2− n)a2} cosh lJ2jJ +DJnDJlJ2{l2

J2 − (2− n)a2} sinh lJ2jJ

+AJ+1,nDJ+1lJ+1,1{l2
J+1,1 + (2− n)a2} cos lJ+1,1jJ +tan lJ+1,1 sin lJ+1,1jJ)

−CJ+1,nDJ+1lJ+1,2{l2
J+1,2 − (2− n)a2}(cosh lJ+1,2jJ

−tan lJ+1,2 sinh lJ+1,2jJ)=0. (7c)

The above equations can be written in a matrix of 4× J order to calculate the eigenvalues
and mode shapes:

[K(v)]{C}=0. (8)

Theoretically, there seems no limit on calculating eigenvalues for any order mode from
the above equations. In practice, however, it should be noted that when the frequency
increases, the functions tanh (lj+1,2) converge to unity, and the functions sinh (lj+1,2) and
cosh (lj+1,2) become similar. This makes the last columns of the matrices in equations (6)
and (8) converge to zero and also makes some of the other columns of the matrix in
equation (8) tend to identical values. Therefore, at high frequencies the matrices become
ill-conditioned, which makes numerical analysis for the eigensolutions difficult.

The first step towards overcoming this problem is to rebase the x-co-ordinate system
in use to a local system where each plate element has its own co-ordinates based at its left
edge (right edge and travelling in the leftwards direction for the first plate). Further, the
hyperbolic terms in the shape function of equation (3) are replaced with exponential ones
so that when the argument of the positive exponential term becomes large it can be suitable
scaled, i.e., C sinh (li2j)+D cosh (li2j) becomes C exp(−li2j)+D exp(li2j) and when
li2j is large D exp(li2j) can be replaced with D' exp(−li2(ai/a− j)). This reworking of the
problem is then usually sufficient to ensure the matrix being dealt with is well behaved at
all natural frequencies. Some problems do remain, however, when dealing with systems
where nodal lines and joint lines coincide and these must be dealt with separately.

3. THE FINITE STRIP METHOD

The finite strip method may be considered as a special form of the FEM. The main
difference may be said to be, taking a 2-D example, that the displacement function in the
FSM combines a simple polynomial in the transverse direction and a continuously
differentiable smooth series in the longitudinal direction, rather than the polynomials used
in all directions in the FEM. Based on this special form of displacement function, the FSM
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offers higher accuracy and smaller model sizes, since normally meshing in the longitudinal
direction is unnecessary. For example, the general form of strip element displacement
function for plate bending vibration can be represented by the product of a cubic
Hermitian function in the x direction and a series of analytical vibration modes in the y
direction as

W(j, h)= s
r

n=1

fn(j)Yn(h) (9)

where Yn(h) represents the nth term in a series of modes from the differential equation of
a vibrating strip element (beam) obtained, a priori, (in the simply-supported case
Yn(h)= sin (nph)) which makes the W(j, h) of type similar to equation (2) in the classical
plate theory. However, the shape function fn() in the classical FSM normally takes a cubic
Hermitian function represented in terms of the nodal coefficients, namely the transverse
displacement hin and rotation about the nodal line ain corresponding to the nth term of
Yn(h) as

fn(j)= (1−3j2 +2j3)hin + l(j−2j2 + j3)ain +(3j2 −2j3)hi+1,n + l(−j2 + j3)ai+1,n , (10)

or in matrix form

fn(j)= [C1(j)C2(j)C3(j)C4(j)]{h}n , (11)

where {h}n = {hin , ain , hi+1,n , ai+1,n}T is the nodal coefficient vector.
Since a cubic Hermitian function is chosen for the above shape function in the classical

FSM, the solution accuracy depends upon the meshing size of the strip element model
to a significant extent. In order to improve accuracy without increasing model size, the
shape function should be exact and generated from the differential equation of a vibrating
beam,

f2(j)= m4/l4f(j), (12)

where l is the strip element length and m4 = rv2Al4/EI.
The general solution of equation (12) is a frequency-dependent function of a type similar

to equation (3):

f(j, h)=A sin (mj)+B cos (mj)+C sinh (mj)+D cosh (mj). (13)

By introducing the following boundary conditions of the element into equation (13),

f(j, v)= h1, f '(j, v)= u1 at j=0,

f(j, v)= h2, f '(j, v)= u2 at j= l, (14)

the shape function can be written in terms of the nodal coefficients as

f(j, v)=S1(j, v)h1 +S2(j, v)u1 +S3(j, v)h2 +S4(j, v)u2. (15)

Theoretically, such a shape function can be used to replace that in equation (10) for
deriving the stiffness and mass matrices of the plate. However, since f(j, v) is a function
of v, the stiffness and mass matrices obtained would be frequency dependent and cause
some difficulty when solving the eigenproblem. In order to avoid this problem, the shape
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function f(j, v) can be assumed to be represented by a series in ascending powers of the
frequency v:

f(j, v)= s
a

r=0

vr[S(j)]r{h}. (16)

By substituting equation (16) into equation (12), one obtains

s
a

r=0

vr[S2(j)]r{h}−v2G s
a

r=0

vr[S(j)]r{h}=0, (17)

where G= rA/EI.
By equating the coefficients of the same powers of v in equation (17) to zero, the

following equations can be obtained:

[S2(j)]0 =0, [S2(j)]1 =0, [S2(j)2 =G[S(j)]0,

[S2(j)3 =G[S(j)]1, · · · , [S2(j)n =G[S(j)]n−2, · · · . (18)

By solving equations (18), the functions [S(j)]r can be obtained and represented as

[S(j)]0 = [(1−3j2 +2j3)l(j−2j2 + j3)(3j2 −2j3)l( − j2 + j3)], [S(j)]1 =0,

[S(j)]2 = rAl4/2520EI[(66j2 −125j3 +105j4 −21j6 +6j7)l(12j2 −22j3 +21j5

−14j6 +3j7)(39j2 −54j3 +21j6 −6j7)l(−9j2 +13j3 −7j6 +3j7)],

[S(j)]3 =0, · · · . (19)

Substituting these functions into equation (16) yields a shape function of series type. Since
the shape function is frequency dependent and satisfies the differential equation of a
vibrating beam element, it is called a ‘‘dynamic’’ shape function.

Further, by substituting the ‘‘dynamic’’ shape function into equation (9), the
displacement function can also be written in a series form as

W(j, h)= s
N

n=1

([S(j)]0Yn(h)+v2[S(j)2Yn(h)+v4[S(j)]4Yn(h)+ · · ·){h}n . (20)

Using Hooke’s Law and the relationship between displacement and strain gives s=[D]o,
where

−12W/1j2

s
N

n=1

(−[S0(j)]0Yn(h)−v2[S0(j)]2Yn(h)− · · ·)hn

o=g
F

f
−12W/1h2 h

J

j
= s

N

n=1

(−[S(j)]0Y0n (h)−v2[S(j)]2Y0n (h)− · · ·)hn , (21)g
G

G

G

G

G

G

F

f

h
G

G

G

G

G

G

J

j

212/W/1j1h

s
N

n=1

(2[S'(j)]0Y'n (h)+2v2[S'(j)]2Y'n (h)+ · · ·)hn
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or

o=([B(j, h)]0 +v2[B(j, h)]2 +v4[B(j, h)]4 + · · ·){h}, (22)

where

− s
N

n=1

[S0(j)]iYn(h)

[B(j, h)]i =g
G

G

G

G

G

G

F

f

− s
N

n=1

[S(j)]iY0n (h) h
G

G

G

G

G

G

J

j

. (23)

2 s
N

n=1

[S'(j)]iY'n (h)

By applying the minimum potential energy principle, the strip element stiffness matrix
can be obtained as

[K(v)]=ggt

([B(j, h)]0 +v2[B(j, h)]2 + · · ·)T[D]([B(j, h)]0 +v2[B(j, h)]2 + · · ·) dj dh.

(24)

This results in a strip element stiffness matrix of order 4N in a series matrix form:

[K(v)]= [K]0 +v2[K]2 +v4[K]4 + · · · . (25)

In a similar way, the mass matrix of a consistent mass model can be also derived and
written as

[M(v)]= [M]0 +v2[M]2 +v4[M]4 + · · · . (26)

It is interesting to note that [K0] and [M0] appear to be identical with the [K] and [M]
derived by the classical FSM, since the first term of the ‘‘dynamic’’ shape function is of
the same type as the cubic Hermitian function used as the shape function in the classical
FSM. This means that the [K(v)] and [M(v)] provide an extended and improved model
for [K] and [M].

Since the discretization is carried out only in the x direction and the nodal coefficients
are only related to the fn(x), the assembly of elements for the complete plate is carried out
in one dimension in a similar manner to the FEM. The governing equation of the vibrating
plate, ignoring the damping, can finally be obtained in the usual form as

([K]0 +v2[K]2 + · · ·])−v2([M]0 +v2[M]2 + · · ·){h}=0. (27)

This equation is solved by first ignoring the higher order terms and using a standard QR
algorithm, and then iteratively with each pair of additional terms in turn. There is normally
no need to go beyond the terms in v2, however, as the series converges very rapidly.

4. NUMERICAL EXAMPLES

In order to demonstrate the application of the above methods, two simply
supported steel plates with thickness changes as shown in Figures 1 and 2 are taken
as examples.

In the first example, a thin square plate with a= b=1·0 m, t1 =0·001 m and two
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Figure 2. A simply supported stepped thickness plate.

stiffeners as shown in Figure 1 is chosen. In this example, three different thickness ratios
of the stiffener to plate thickness t2/t1 =1·0, 1·2 and 1·5 are considered with joint lines
located at a1 =0·3, a2 =0·4, a3 =0·6 and a4 =0·7 m. In modelling the plate by using
classical analysis, the plate is divided into five parts which results in a set of 16 ordinary,
linear simultaneous equations to solve. In the plate model when using FEM, 10×10 and
20×20 meshes are taken, respectively, for comparison with the other methods. This
results in a FE model with matrix orders of 243 and 1083, respectively (four-noded
rectangular elements with three degrees of freedom are used at each corner and fourth
order Hermite polynomial shape functions with C1 continuity). In the FSM, only the first
three terms of the Yi(y) series are taken to generate the strip element displacement function
in the longitudinal y direction. In the transverse x direction, discretization is carried out
by dividing the plate into 10 strip elements with four DOF in each element. This results
in a 12×12 order matrix for each element model and 60×60 order for the whole plate
model. The first eight natural frequencies obtained by the above three methods are
compared in Table 1. Here, the classical analysis takes around two seconds to find the eight
frequencies for a single plate geometry when using a Sun Ultra 2 model 140, the FSM
slightly less than one s for either static or dynamic formulations and the FEM about 50 s
for the 10×10 mesh and 3100 s for the 20×20 mesh.

Consider first the results from the 10×10 mesh case when using the FEM and compare
these with the results of the classical method; see Table 1. It is seen that the accuracy of
solutions drops as the order of the modes increases, as expected. To take the uniform
thickness case as an example, the frequency errors of mode 1 and mode 8 are 0·7% and
7·2%, respectively. This shows that the solution accuracy of the FEM is heavily dependent
upon the element size. By refining the mesh to 20×20, the accuracy of all solutions is
improved significantly, with reduced frequency errors of 0·2% for mode 1 and 1·9% for
mode 8, respectively. However, the cost of computing time has increased significantly.
Secondly, by using the FSM, which generates a much smaller model size and therefore is
more efficient than the FEM, it is seen that virtually perfect solution accuracy is obtained
for all modes and all three thickness ratios. Lastly, it is noted that the FSM method with
10 strip elements is sufficient to generate accurate solutions with or without the ‘‘dynamic’’
element formulation in this case.

In the second example, a square plate of a= b=1·0 m and t1 =0·001 m, as per example
1, but with a stepped thickness as shown in Figure 2 is considered. In this example, three
different thickness ratios of t2/t1 =1·0, 1·25 and 2·0 are taken with the joint line location
at a1 =0·5 m. In the classical method this time the plate is divided into two parts, resulting
in a set of eight equations. In the FEM, 10×10 and 20×20 meshes are again taken. In
the FSM, however, the plate is divided into only four strip elements. This results in a
24×24 order matrix for the whole plate model. Obviously, the model size of the FSM
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T 1

Comparison of natural frequencies (rad/s) for example 1 (bracketed terms are for FEM with
a 20×20 mesh or the ‘‘dynamic’’ FSM)

Mode t2/t1 =1·0 t2/t1 =1·2 t2t1 =1·5
no. CM FEM FSM CM FEM FSM CM FEM FSM

1 30·67 30·88 30·67 31·74 31·95 31·74 33·17 33·39 33·17
– (30·73) (30·67) – (31·79) (31·74) – (33·23) (33·17)

2 76·68 77·66 76·68 79·30 80·69 79·30 81·69 83·26 81·70
– (76·94) (76·68) – (79·70) (79·29) – (82·11) (81·69)

3 76·68 79·01 76·69 80·60 82·64 80·60 87·64 89·78 87·68
– (77·27) (76·68) – (81·07) (80·60) – (88·20) (87·67)

4 122·7 125·6 122·7 127·3 130·3 127·3 134·2 137·4 134·2
– (123·5) (122·7) – (128·2) (127·3) – (135·1) (134·2)

5 153·4 160·9 153·4 156·4 164·2 156·4 161·5 169·3 161·6
– (155·3) (153·4) – (158·3) (156·3) – (163·5) (161·5)

6 153·4 161·4 153·4 162·5 170·9 162·5 179·0 188·8 179·1
– (155·4) (153·4) – (164·6) (162·4) – (181·6) (179·0)

7 199·4 202·7 199·4 207·1 211·0 207·2 221·1 224·6 221·2
– (200·4) (199·3) – (208·5) (207·0) – (222·7) (221·0)

8 199·4 213·7 199·4 207·8 222·5 207·8 222·0 237·9 222·0
– (203·2) (199·4) – (211·5) (207·7) – (226·0) (221·8)

in this example is significantly reduced compared with example 1 and is much smaller than
that for the FEM.

First, from comparison of the classical method and the FEM results for this example
(see Table 2), comments may be made similar to those about Table 1 for the first example:
i.e., errors increase with mode number and thickness change and decrease with increasing
mesh density. Secondly, comparing the results in Table 2 for the classical method and the

T 2

Comparison of natural frequencies (rad/s) for example 2 (bracketed terms are for FEM with
a 20×20 mesh or the ‘‘dynamic’’ FSM, note also that the classical method results differ
from those of Chopra due to the incorrect boundary conditions used in that work; see text)

Mode t2/t1 =1·0 t2/t1 =1·25 t2t1 =2·0
no. CM FEM FSM CM FEM FSM CM FEM FSM

1 30·67 30·88 30·68 34·23 34·47 34·50 44·50 44·85 45·22
– (30·73) (30·66) – (34·29) (34·48) – (44·59) (45·18)

2 76·68 77·66 76·69 85·69 87·07 86·19 109·1 111·2 110·9
– (76·94) (76·64) – (86·12) (85·83) – (109·8) (110·2)

3 76·68 79·01 76·88 86·33 88·70 88·55 110·2 113·3 113·3
– (77·27) (76·63) – (86·85) (88·11) – (110·9) (112·6)

4 122·7 125·6 122·8 137·7 140·9 140·9 172·6 176·9 178·2
– (123·5) (122·8) – (138·6) (140·8) – (173·8) (178·1)

5 153·4 160·9 153·4 169·3 177·8 169·8 197·3 206·7 198·0
– (155·3) (153·3) – (171·5) (169·7) – (199·8) (197·7)

6 153·4 161·4 155·7 169·8 178·5 177·9 211·4 221·5 237·6
– (155·4) (153·8) – (171·9) (173·6) – (214·0) (226·4)

7 199·4 202·7 199·5 222·1 227·1 229·2 287·2 296·2 299·8
– (200·4) (195·1) – (224·1) (222·5) – (290·4) (285·8)

8 199·4 213·7 201·3 224·6 239·4 231·9 293·2 310·6 322·3
– (203·2) (197·3) – (228·1) (228·3) – (297·6) (292·7)
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FSM, it is noted that the effect of model size reduction on the accuracy for the uniform
thickness case is less than 1% at worst. However, errors in the results for the stepped
thickness cases when using the classical FSM are now quite significant due to the reduction
in the number of elements and consequent model size. The reason for this is mainly
because, as described in section 3, the approximation of the cubic Hermitian function used
as the shape function for representing the strip element deflection in the transverse
direction becomes poor when the element size increases in that direction. Therefore,
improvement of the shape function by using the dynamic FSM should be expected to
increase the solution accuracy, as seen in Table 2. By applying the dynamic FSM to the
stepped thickness cases, the results at all frequencies have been improved, although this
improvement varies with the number of half wavelengths exhibited by the modes in the
strip direction, as might be expected. It is clear that the ‘‘dynamic’’ finite strip method is
dramatically more efficient than traditional finite elements in this case.

5. CONCLUSIONS

The free vibration analysis of a stepped, simply supported thin plate has been
investigated by applying classical, finite strip and finite element methods. Effort has been
made to deal with and overcome the difficulties occurring when calculating high order
modes using classical methods. The approach adopted eliminates the upper frequency
range limit associated with the numerical difficulties inherent in a simplistic application of
classical methods to such problems. The classical finite strip method has also been
improved by developing a dynamic shape function in series form to replace the ‘‘static’’
cubic Hermitian function. Because of the shape function improvement, the dependence of
the solution accuracy upon the strip element size can be largely reduced. Therefore,
solution accuracy can be improved without increasing model size. This allows reduced
computing effort and improves analysis efficiency. When compared with the traditional
FEM, this advantage is even more significant.
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APPENDIX: NOTATION

a, b dimensions of plate, see Figures 1 and 2
ai , ti step length and thickness of the ith part of the plate, see Figure 1
A, l cross-sectional area and length of a beam element
Ain , Bin , Cin , Din coefficients in the nth shape function of the ith part of a vibrating plate
Di plate rigidity corresponding to ti , Et3

i /12(1− n2)
E Young’s modulus
I moment of inertia of cross-sectional area
J number of joints in the plate
n number of half sine waves in y direction
Wi(x, y) shape function of the ith part of the plate
x, y rectangular coordinates
j, h non-dimensional co-ordinates x/a and y/b, respectively
r, n material density and Poisson’s ratio
k4

i rv2ti/Di

v radian frequency of oscillation
li1, li2 azk2

i − a2, azk2
i + a2

a np/b
92 Laplacian in rectangular co-ordinates.


